4 Problems A Sanding Robot Could Help Resolve

Manual skilled labor is always as difficult and time-consuming as it seems. When it comes to sanding, there is a recurring set of problems that can arise due to many factors. Sanding is still a human's game despite significant advancements in autonomous technology. Like most things, being human means human errors are still part of the process. Some of the biggest problems lie in the equipment setup, miscalculations of distances, and, of course, fatigue.

Moving toward an autonomous can solve a great deal of the problems that lie in sanding processes, but, first, it’s important to understand what kind of problems are the most common.

Chatter Marks, Wavy Surfaces, and Ridges

Chatter marks describe the rippling pattern that can appear across a piece when something goes wrong in the sanding process. Wavy surfaces on a piece of wood mean that there are a consistent number of peaks and valleys across the surface. Finally, ridges are raised lines that appear along the surface of the worked piece.

Oftentimes, these problems occur when there’s an issue with the sanding machine itself or if there has been inconsistent or poor maintenance. Some of the causes include the improper installation of paper on the drum sander, the belt speeds being too fast or slow, or the conveyer belt wearing out. If most of these problems occur because of machine problems, then the burden of constantly checking the integrity of these machines falls on the employees themselves.

Closeup professional carpenter hand grinding raw wood plank with orbital sander electric machine in carpentry diy workshop. Detail of furniture restoration renewal. Power tool and equipment concept,
Disfigurations on improperly sanded wood will become immediately apparent. Moving toward an autonomous robotics system will minimize the negative outcomes.

Not Enough Sanding

Sanding is a long and arduous process. One that is immensely demanding on the worker going at it for hours on end. Sometimes, the process can involve sanding whole floors or simply an abundance of pieces that need to be sanded in a set amount of time to reach a quota. In any case, when there’s a large amount of work to be done, sometimes a worker will cut corners to reach the deadline, even if that means sacrificing quality.

Even though you might see a noticeable difference in the floors after the first round of sanding, this doesn’t necessarily mean the job is done. Ideally, you’d want to increase the grits in your sandpaper as the work progresses as each higher grit will help remove scratches from lower grit sandpaper. Typically, the grits available will go from 80-120-180 but ideally, you’d have grits available from 80-100-120-150-180. It’s possible that the latter sizes aren’t all available or convenient to come by, but adhering to the former sizes, it should be just enough to ensure that there aren’t scratches left behind if you decide to just use one set of grit-size sandpaper. If it sounds like a lot of work, it most definitely is, but a longer, proper job is infinitely better than a quicker job with mediocre results.

Over-Sanding

Of course, if problems arise when you don’t sand enough, there will surely be some if you sand too much. A sign that wood has been over-sanded is if it starts to look uneven. Over-sanding will not generally occur when you’re sanding the entire piece. Instead, it’s more likely to occur when a specific part of the piece has some sort of discoloration, scratches, or gouges. In an effort to fix these small problems, the person sanding might think they can fix it by continuously sanding that one part until it’s been overdone. 

Luckily, over-sanding isn’t so big of a problem that you have to throw out the piece and restart from scratch. There are ways to fix over-sanded wood and, while it may add to the amount of working time, it at least provides a way to fix a mistake that could have been avoided.

Repairman restoring parquet with a sanding machine.
Over sanding and misusing the sander will cause several problems on the wood. Human error is mostly at play when this happens.

Misusing The Sander

Most sanding is done by real people in real time, but they need machinery to make the sanding work. Naturally, the sander is the worker’s most prized possession during the sanding process. Using it, however, requires a great deal of patience, detail, and willingness to spend long hours perfecting the job.

A recurring problem that arises in sanding is when there’s too much pressure being applied on the sander.  This excess pressure can lead to swirls, the disfiguration of the wood, uneven edges, and the potential overheating of the sander. The last thing you need is the machine breaking halfway through the job.

Along with sanding carefully, the pace at which you sand should be calculated, avoiding the urge to go too fast or too slow. Unless you need a specific job to accomplish, most sanding companies will agree that 10,000 RPM is good enough to handle most jobs. If you have some finer sanding to do, you’ll likely need to recalculate that so it fits your needs.

These problems will once again arise with human error as it is the person themselves who set up how the machine will work. If you’ve been at it for too long and are fatigued or if you’re just not sure what the exact process is, it’s likely that you will encounter problems throughout the sanding process.

Mitigating The Sanding Problems

Most of the problems listed above have a recurring theme: human error. As much good work as people have done sanding over the years, it’s only normal that they slip up from time to time. After all, they are human. Sometimes, they’re tired and forget a step. Other times, they simply lack the guidance to perfect their work.

As the skilled labor market continues to tighten, finding experienced sanders is always a tough ask. For those who are left, their skills will retire with them. A potential solution could be to think about automation. Robotics and sanding aren’t a new concept together, but there’s an extra layer that will eventually be tacked on: autonomous sanding.

An autonomous sanding robot, such as the PSA-80 PRO, ultimately mitigates all human errors that occur during the sanding process.

Most robots are programmable using a variety of robotic middleware, while others, like Omnirobotic finishing products, replace programming with behavior-based autonomy (mission-driven). This means that the robots learn the size, position, and dimensions of the pieces to be processed and know exactly how to sand them without requiring constant human labor. Humans are not entirely replaced; they are responsible for replacing the pieces when necessary and overseeing the processes. The risk of human error decreases as autonomous robots handle a significant portion of the work.

An autonomous sanding robot, such as the PSA-80 PRO, ultimately mitigates all human errors that occur during the sanding process.

By leveraging AI, AutonomyOS™ can automate many of the most repetitive and least engaging tasks that still require human levels of perception, know-how, and precision. AutonomyOS™ uses AI to specify the desired outcome and select the most efficient and relevant execution options. AI utilizes neural networks and digital twin data to predict, monitor, and achieve the most profitable results, helping to avoid costly delays and mistakes. By using 3D perception with AI-based task planning and motion planning, woodworkers can now use robots powered by AutonomyOS™ to sand various pieces of wood to perfection, regardless of their size and shape.